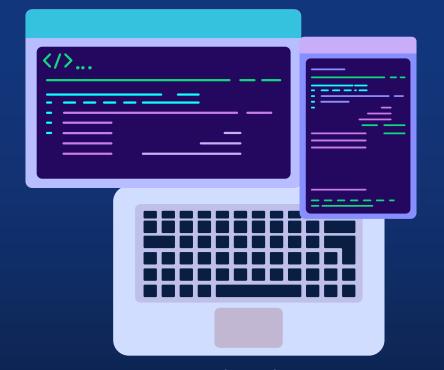
CLEF JOKER Tasks 1-3



Rowan Mann, Christian-Albrechts-Universität zu Kiel (CAU) Tomislav Mikulandrić, University of Split, Faculty of Science

Overview

Use TF-IDF to rank the jokes for some queries
Try different types of models for joke classification
Compare translation models

query	text	qrel	docid	qid	
testament	Testament is a written document that outlines	0	27260	qid_train_0	0
testament	She was only an Attorney's daughter, but what	1	28561	qid_train_0	1
testament	I've inherited a fortune, said Tom, willfully	1	51135	qid_train_0	2
testament	The Hong Kong businessman left a huge estate w	1	17068	qid_train_0	3
testament	My name is Will, I'm a lawyer.	1	591	qid_train_0	4
buzz	Buds may be specialized to develop flowers or	0	4030	qid_train_8	2384
buzz	Waiter, there's a fly in my soup!" I know. It	1	58185	qid_train_8	2385
buzz	OLD PILOTS never die, they just buzz off.	1	53481	qid_train_8	2386
buzz	Get the buzz on your favorite bee dependent fl	1	53166	qid_train_8	2387
buzz	The term bud is also used in zoology, where it	0	56305	qid_train_8	2388

Task 1: Humour-aware information retrieval

- Retrieve text relevant to the query, which is also an instance of wordplay
- Combine the data from multiple JSON files
- TF-IDF vectorizer, document is all texts
- Rank the texts for a single query and keep only the important ones
- Documents having the query term rank on top


```
results = []
# Iterate over each test query
for index, test query in data test queries.iterrows():
   query id = test query['qid']
   query_text = test_query['query']
    # Calculate relevance for each joke in the corpus with this query
   scores = []
    for _, joke in data_corpus.iterrows():
        if joke['text'] is None:
            continue
          text all = query text + " " + joke['text']
          vectorized text = tfidf vectorizer.transform([text all])
          relevance score = model.predict proba(vectorized text)[0, 1]
          scores.append({
              'docid': joke['docid'],
              'score': relevance score
```

Task 1: Humour-aware information retrieval

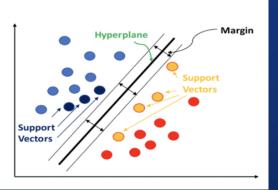
- Created a LogisticRegression model
- Good for binary classification
- Another approach would be to ask an LLM
- Time exhaustive for a lot of texts
- At the end sort the joker by relevance

- Load data and merge it with qrels JSON so that we get a training dataframe with classes for each joke
- IR Irony
- SC Sarcasm
- EX Exaggeration
- AID Incongruity
- SD Self-deprecating
- WS Wit
- Preprocess the text and load it to clean_text column

```
# Preprocessing function
from nltk.stem import WordNetLemmatizer
import contractions
import re
import nltk
nltk.download('stopwords')
nltk.download('wordnet')
from nltk.corpus import stopwords
lem = WordNetLemmatizer()
def preprocess text(text):
      sms = contractions.fix(str(text)) # converting shortened words to original (Eg:"I'm" to "I am")
      sms = sms.lower() # lower casing the message
      sms = re.sub(r'https?://S+|www.S+', "", sms).strip() #removing url
      sms = re.sub("[^a-z ]", "", sms) # removing symbols and numbers (keeping only charachters from a-z)
     sms = sms.split() #splitting
      # lemmatization and stopword removal
     sms = [lem.lemmatize(word) for word in sms if not word in set(stopwords.words("english"))]
      sms = " ".join(sms)
      return sms
X = df_train["text"].apply(preprocess_text)
```


Task 2: Humour classification according to genre and technique

- Split to train/test datasets
- Train the models and make predicitons
- LogisticRegression can also be used for multiclass classification
- NaiveBayes performed the worst
- Support Vector Classifier (SVC)



	precision	recall	f1-score	support
AID	0.65	0.32	0.43	47
EX	0.50	0.08	0.14	38
IR	0.30	0.20	0.24	41
SC	0.46	0.46	0.46	79
SD	0.80	0.25	0.38	32
WS	0.47	0.86	0.61	112
accuracy			0.48	349
macro avg	0.53	0.36	0.37	349
weighted avg	0.50	0.48	0.43	349

Task 3: Translation of puns from English to French

- easyNMT Easy to use, state-of-the-art
 Neural Machine Translation
- Automatic download of pre-trained machine translation models
- Can translate between 150+ languages


```
from transformers import MarianMTModel, MarianTokenizer
# Load pre-trained MarianMT model and tokenizer for English to French translation
model name = "Helsinki-NLP/opus-mt-en-fr"
model = MarianMTModel.from pretrained(model name)
tokenizer = MarianTokenizer.from pretrained(model name)
# Define input text
input text = "Translate this text to French."
# Tokenize input text
inputs = tokenizer(input text, return tensors="pt")
# Perform translation
outputs = model.generate(**inputs)
# Decode translated output
translated text = tokenizer.decode(outputs[0], skip special tokens=True)
# Print translated text
print("Translated text:", translated text)
```

Task 3: Translation of puns from English to French

- MarianMT A framework for translation models, using the same models as BART
- Transformer style architecture
- Fine-tuned model for English to French translation

```
"run_id": "Tomislav&Rowan_task_3_MarianMTModel",
    "manual": 0,
    "id_en": "en_0",
    "text_fr": "Pour obtenir 20/20 dans un marathon, vous avez vraiment besoin d'avoir r\u00e9vis\u00e9 vos cours."
},

{
    "run_id": "Tomislav&Rowan_task_3_MarianMTModel",
    "manual": 0,
    "id_en": "en_1",
    "text_fr": "Le professeur de maths arrive toujours en portant un nombre impair."
},
```

run_id =	count	∓ F	BLEU =	BLEU_1 =	BLEU_2 =	BLEU_3 =	BLEU_4 =	count =	BERT_score_P =	BERT_score_R =	BERT_score_F1 =
Arampatzis_GoogleTranslate		376	65,23	78,96	67,48	61,59	57,52	832	91,93%	91,82%	91,85%
Frane_TranslationModel		92	57,13	64,33	58,41	54,66	51,85	279	92,06%	91,53%	91,77%
Dajana&Kathy_TranslationModel		376	58,45	71,94	60,27	54,11	49,73	832	91,35%	91,00%	91,15%
UBO_SDL		312	13,17	71,90	57,17	49,13	43,24	598	90,13%	90,21%	90,15%
Tomislav&Rowan_MarianMTModel		376	58,85	77,11	63,66	56,06	50,45	832	90,82%	89,19%	89,95%
Arampatzis_MarianMT		376	58,85	77,11	63,66	56,06	50,45	832	90,82%	89,19%	89,95%
UBO_ChatGPT		312	13,09	69,90	54,08	46,07	40,31	598	89,12%	89,34%	89,21%
UBO_DeepL		312	11,97	68,53	50,32	41,38	35,11	598	89,06%	89,31%	89,16%
UAms_T5-base_ft		376	48,74	71,75	54,57	45,18	38,05	832	89,53%	88,52%	89,00%
Arampatzis_mBART		376	48,71	70,95	54,40	45,29	38,67	832	88,95%	87,41%	88,13%
Arampatzis_M2M100		376	42,37	68,46	48,73	37,72	29,93	832	88,23%	87,23%	87,70%
UAms_Marian_ft		376	25,69	47,05	28,47	20,74	15,69	832	81,06%	82,53%	81,74%
Tomislav&Rowan_MarianMTModel		1	11,46	100,00	100,00	100,00	100,00	3	84,42%	71,23%	77,26%
Farhan_2		376	14,33	23,68	15,84	12,05	9,32	832	69,38%	77,14%	72,96%
Farhan_1		376	9,21	15,92	9,97	7,65	5,92	832	64,30%	73,18%	68,41%
jokester_MarianMTModel		49	0,29	15,34	0,14	0,08	0,04	112	67,30%	66,38%	66,80%
Arampatzis_opus_mt		63	0,29	15,04	0,23	0,06	0,03	157	66,98%	66,05%	66,47%

0,17

0,10

0,06

157

65,91%

64,79%

65,31%

Arampatzis_T5

63

0,32

11,35

Conclusion

Recent advances in LLM make them a valid choice for humor detection, but LLM's still have issues with grasping humor

Classical classification models should be a better fit for humor type classification Specialized translation frameworks work better than LLMs

Use of puns may be too subtle for an LLM to acknowledge it

Irony is by far the hardest type of humor for machines to detect

Questions?

