University of A CLEF 2024

Areyou

Jaap Kamps, Emma Schuu

CLEF 2024 SimpleText Track, September 11, 2024, Grenoble, France

them?

Motivation Is this a joke?

- State of the art AI, NLP AI models cannot cope with humor or other **non-literal meaning** in text
- Impossible to learn from text usage alone!
- Related to the surface structure of the utterance (orthography) and not the **deeper semantics**
- Important for jokes, but also to understand cultural references, or detect harassment and bullying

SENSE OF HUMOR NOT DETECTED. PROCEED WITH

What Happens When Searching, Classifying and Translating Humor?

Task	Run	De
1	UAms_Task1_Anserini_bm25	Β٨
1	UAms_Task1_Anserini_rm3	RN
1	UAms_Task1_bm25_CE100	Β٨
1	UAms_Task1_rm3_CE100	Β٨
1	UAms_Task1_bm25_BERT_Filter	Β٨
1	UAms_Task1_rm3_BERT_Filter	Β٨
1	UAms_Task1_rm3_T5_Filter1	Β٨
1	UAms_Task1_rm3_T5_Filter2	Β٨
2	UAms_Task2_BERT_ft	BE
3	UAms_Task3_Marian_ft	Ma
3	UAms_Task3_T5-base_ft	T5-

Experiments Humor-Aware Information Retrieval and Humor-Aware Machine Translation

escription

- M25 baseline (Anserini, stemming)
- M3 baseline (Anserini, stemming)
- M25 + Crossencoder top 100
- M25/RM3 + Crossencoder top 100

M25 + Filter on BERT WordPlay classifier (keeps 76%) M25/RM3 + Filter on BERT WordPlay classifier (keeps 46%) M25/RM3 + Filter on WordPlay classifier (keeps 53%) M25/RM3 + Filter on WordPlay classifier (keeps 43%)

ERT classifier (fine-tuned)

arian Finetuned

-base Finetuned

Finding Humor?

#1 Topically relevant versus humorous text

Evaluate on Humor (top) or Relevant (bottom)

Run	MRR]	Precision			NDCG		Bpref	MAP
		5	10	20	5	10	20		
UAms_Task1_Anserini_bm25	0.1906	0.1167	0.1583	0.1361	0.1008	0.1598	0.2272	0.2376	0.1582
UAms_Task1_bm25_CE50	0.1248	0.0833	0.0750	0.1028	0.0697	0.0683	0.1498	0.1155	0.0668
UAms_Task1_bm25_CE100	0.1233	0.0833	0.0750	0.0889	0.0685	0.0682	0.1300	0.0922	0.0702
UAms_Task1_bm25_CE1000	0.1039	0.0833	0.0750	0.0806	0.0660	0.0666	0.1188	0.0687	0.0898
UAms_Task1_Anserini_rm3	0.2407	0.1667	0.1750	0.1250	0.1506	0.1896	0.2339	0.2989	0.1725
UAms_Task1_rm3_CE50	0.1259	0.1000	0.0833	0.1056	0.0806	0.0754	0.1582	0.1233	0.0662
UAms_Task1_rm3_CE100	0.1231	0.0833	0.0917	0.1028	0.0685	0.0801	0.1422	0.0921	0.0712
UAms_Task1_rm3_CE1000	0.1038	0.0833	0.0667	0.0833	0.0660	0.0618	0.1238	0.0837	0.0957
UAms_Task1_Anserini_bm25	0.6597	0.5500	0.5333	0.5111	0.3182	0.3477	0.4125	0.6510	0.3503
UAms_Task1_bm25_CE50	0.8917	0.5833	0.5167	0.5056	0.3453	0.3267	0.3976	0.2897	0.1622
UAms_Task1_bm25_CE100	0.8056	0.5167	0.5000	0.4917	0.3048	0.3076	0.3757	0.3655	0.1959
UAms_Task1_bm25_CE1000	1.0000	0.5500	0.5083	0.5083	0.3435	0.3312	0.3935	0.6510	0.3639
UAms_Task1_Anserini_rm3	0.7282	0.5833	0.5250	0.4944	0.3686	0.3659	0.4105	0.6682	0.3528
UAms_Task1_rm3_CE50	0.8917	0.6000	0.5167	0.4861	0.3562	0.3312	0.3930	0.2847	0.1590
UAms_Task1_rm3_CE100	0.8056	0.5167	0.5167	0.5111	0.3048	0.3198	0.3907	0.3652	0.1972
UAms_Task1_rm3_CE1000	1.0000	0.5500	0.5000	0.5056	0.3435	0.3262	0.3951	0.6682	0.3682

• Neural rankers work on topical relevance, but fail dramatically on humor

#1 Relevant + Humorous

Humor-aware IR is different from topical relevance

Detecting Humor?

#2 Can we detect humorous text?

CLEF 2023 Joker Task 1: Pun Detection Revisited

- General approach to the Joker Track:
 - What if we can **detect humorous text**?
- If successful, we can create:
 - Humor-aware Information Retrieval by filtering results of standard IR model Humor-aware Machine Translation by selecting from candidate translations
- Problem: Pun Detection proved very hard
 - Best 2023 system F1 of 53.61% on a binary classification problem!

CLEF 2023 Joker Task 1: Pun Detection (English)

Evaluation of the CLEF 2023 Joker Pun Detection Task (English)

Model	F1 Score	Precision	Recall	Accuracy
BERT	0.70	—		0.72
SimpleT5_V1	0.80	0.72	0.90	0.76
SimpleT5_V2	0.80	0.74	0.87	0.77

- Pun detection is hard but "works":
 - F1 of 80% on hold out/unseen data
 - Requiring safeguards against overfitting!
 - Best performing 2023 model F1 of 0.5361 for English
 - Majority class prediction F1 of 50% (test) and 58% (train).

CLEF 2023 Joker Task 1: Pun Detection (French)

Evaluation of the CLEF 2023 Joker Pun Detection Task (French) on 10% hold-out (top) and train/test data (bottom)

Model	n	Accuracy	Precision	Recall	F1 Score
Dummy-Model	399	0.49	0.47	0.52	0.50
DistilBERT-base	399	0.71	0.71	0.69	0.68
DistilBERT-FT1	399	0.72	0.71	0.69	0.70
DistilBERT-FT2	399	0.70	0.57	0.75	0.65
DistilBERT (FT1) train	3,999	0.9395	0.9475	0.9304	0.9389
DistilBERT (FT1) test	17,791	0.7518	0.7189	0.7009	0.7098

- Pun detection is hard but "works":

 - Best performing 2023 model F1 of 0.6645 for French.

• F1 of 71% on hold out/unseen data — majority class prediction F1 of 50%

#2 We can detect humorous text!

Can we exploit effective humor detection?

Searching for Humor?

#3 Humor-aware IR based on humor detection

Humor-Aware Information Retrieval

Run	MRR	Precision			Recall		NDCG	Bpref	MAP
		5	10	5	10	20			
UAms_Task1_Anserini_bm25	0.1873	0.0489	0.0556	0.0564	0.0819	0.1624	0.2417	0.0928	0.0800
UAms_Task1_Anserini_rm3	0.1977	0.0578	0.0622	0.0611	0.0830	0.1511	0.2677	0.0921	0.0845
UAms_Task1_bm25_CE100	0.0762	0.0356	0.0267	0.0332	0.0388	0.0964	0.1749	0.0610	0.0416
UAms_Task1_rm3_CE100	0.0749	0.0356	0.0267	0.0332	0.0388	0.0967	0.1769	0.0602	0.0410
UAms_Task1_bm25_BERT_Filter	0.1883	0.0489	0.0844	0.0590	0.1165	0.1822	0.2430	0.1173	0.0878
UAms_Task1_rm3_BERT_Filter	0.2668	0.1111	0.1156	0.0882	0.1436	0.2079	0.2739	0.1608	0.1156
UAms_Task1_rm3_T5_Filter1	0.2283	0.0933	0.1111	0.0861	0.1478	0.1943	0.2651	0.1628	0.1077
UAms_Task1_rm3_T5_Filter2	0.2604	0.1067	0.1289	0.0882	0.1508	0.2261	0.2820	0.1841	0.1207

- Lexical rankers work OK'ish, but neural zero-shot rerankers fail
 - measures and all topics!

Filtering using pun detection leads to significant improvement on all

#3 Humor-aware IR works!

Humor-aware IR based on effective humor detection

Tans ating Eumor?

#4 Humor-aware MT based on humor detection

Humor-Aware Machine Translation

Run

Source

Reference(s)

UAms_Task3_Marian_ft UAms_Task3_T5-base_ft

- Translating wordplay very hard, for humans and machines!
 - Some MT candidates match reference translations

 - So careful to interpret text overlap measures...

Text

Save the whales, spouted Tom.

"Il faut sauver les baleines," jeta Tom avant de se tasser.

"Il faut sauver les baleines," interjeta Tom.

Moi je sauve les baleines, Tom s'en venta.

Louis évent-a le projet de sauvetage des baleines.

"Sauvez les baleines," proclama Tom à tout évent.

"Sauvez les baleines, cracha Toto, Cétacé!"

"Sauvez les baleines," proclama Tom à tout évent. "Sauvez les baleines," dit Tom.

• But references differ quite a lot, and share many words with literal translations

Humor-Aware Machine Translation

Run	n	BLEU		Precisions			Len	gth		BER	TScore	
			1	2	3	4	Rat.	Tok.	n	Р	R	F1
Reference (test)	376	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5,774	834	1.0000	1.0000	1.0000
MarianMT (optimized) MarianMT/Pun Detector	376 376	0.5100 0.4663	0.7169 0.6902		0.4520 0.4061	0.3810 0.3318	1.042 1.050	6,015 6,061	834 834	0.8985 0.8853	0.8965 0.8849	0.8973 0.8849

- Humor-aware machine translation
 - Careful to generate 5 candidate translations with sufficient variation
 - otherwise hit or miss (all are puns, or none are puns)
 - We filter out the single candidate with the highest expected pun detection score
 - we pick a candidate with a lower translation score in 50% of the cases
 - Evaluation on BLEU and BERTScore looks only at word overlap
 - Scores go down a little, but we score much higher on the pun detector
 - Human inspection of small sample where we pick a next candidate supports this: many are puns.

#4 Humor-aware MT works?

Humor-aware MT based on effective humor detection

Classifying Humor?

#5 Is it irony, sarcasm, exaggeration, or not funny at all...

Task 2: Classifying Humor

Run	Accuracy		Macro			Weighted	
		Precision	Recall	F1 Score	Precision	Recall	F1 Score
UAms_Task2_BERT_ft	0.6561	0.6286	0.6090	0.5672	0.6752	0.6561	0.6254
UAms_Task2_BERT_ft	0.6330	0.5724	0.5845	0.5221	0.6605	0.6330	0.6021

- We also participated in CLEF 2024 Joker Task 2
 - Multi-class prediction problem: incongruity-abs self-deprecating (SD), and wit-surprise (WS).
 - Luke-warm results, OK'ish diagonal in confusion matrix
 - Our model systematically miss-classifies sentences labeled as "irony" with "sarcasm" and "exaggeration"
 - Examples seem to contain elements of irony (typically about a situation and an opposite expectation) and
 of sarcasm (a form of expression, assuming the utterance appeared in some conversational context), or
 elements of exaggeration in some sense

• Multi-class prediction problem: incongruity-absurdity (AID), exaggeration (EX), irony (IR), sarcasm (SC),

#5 What is (not) humor?

Need a rigorous taxonomy of humor

What Happens When Searching, **Classifying, and Translating Humor?**

#1 Humor-aware IR is different from topical relevance **#2 Can we exploit effective humor detection?** #3 Humor-aware IR based on humor detection #4 Humor-aware MT based on humor detection **#5 Need a rigorous taxonomy of humor**

NACCA Thanks to Emma Schuurman, Mick Cazemier, Luc Buijs, and David Rau!

had

Are you laughing with

someone or at them?

What is humor?

Can you be a humorist Without being funny?

Pid you hear the one about?

A Reference on Humor

by someone who

actually changed

their name to

aughing

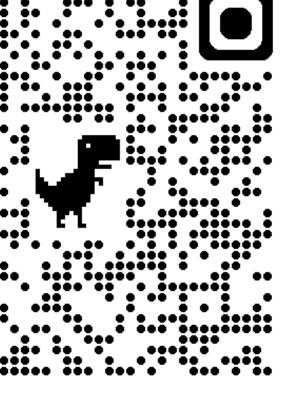
Have you laughed

today?

Learn how to analyze

humor to death...

© 2012 Septry BA Langitha



• ••